Большие данные

27.02.2021

Большие данные (англ. big data, [ˈbɪɡ ˈdeɪtə]) — обозначение структурированных и неструктурированных данных огромных объёмов и значительного многообразия, эффективно обрабатываемых горизонтально масштабируемыми программными инструментами, появившимися в конце 2000-х годов и альтернативных традиционным системам управления базами данных и решениям класса Business Intelligence.

В широком смысле о «больших данных» говорят как о социально-экономическом феномене, связанном с появлением технологических возможностей анализировать огромные массивы данных, в некоторых проблемных областях — весь мировой объём данных, и вытекающих из этого трансформационных последствий.

В качестве определяющих характеристик для больших данных традиционно выделяют «три V»: объём (англ. volume, в смысле величины физического объёма), скорость (velocity в смыслах как скорости прироста, так и необходимости высокоскоростной обработки и получения результатов), многообразие (variety, в смысле возможности одновременной обработки различных типов структурированных и полуструктурированных данных); в дальнейшем возникли различные вариации и интерпретации этого признака.

С точки зрения информационных технологий, в совокупность подходов и инструментов изначально включались средства массово-параллельной обработки неопределённо структурированных данных, прежде всего, системами управления базами данных категории NoSQL, алгоритмами MapReduce и реализующими их программными каркасами и библиотеками проекта Hadoop. В дальнейшем к серии технологий больших данных стали относить разнообразные информационно-технологические решения, в той или иной степени обеспечивающие сходные по характеристикам возможности по обработке сверхбольших массивов данных.

История

Широкое введение термина «большие данные» связывают с Клиффордом Линчем, редактором журнала Nature, подготовившим к 3 сентября 2008 года специальный выпуск с темой «Как могут повлиять на будущее науки технологии, открывающие возможности работы с большими объёмами данных?», в котором были собраны материалы о феномене взрывного роста объёмов и многообразия обрабатываемых данных и технологических перспективах в парадигме вероятного скачка «от количества к качеству»; термин был предложен по аналогии с расхожими в деловой англоязычной среде метафорами «большая нефть», «большая руда».

Несмотря на то, что термин вводился в академической среде и прежде всего разбиралась проблема роста и многообразия научных данных, начиная с 2009 года термин широко распространился в деловой прессе, а к 2010 году относят появление первых продуктов и решений, относящихся исключительно и непосредственно к проблеме обработки больших данных. К 2011 году большинство крупнейших поставщиков информационных технологий для организаций в своих деловых стратегиях использует понятие о больших данных, в том числе IBM, Oracle, Microsoft, Hewlett-Packard, EMC, а основные аналитики рынка информационных технологий посвящают концепции выделенные исследования.

В 2011 году Gartner отметил большие данные как тренд номер два в информационно-технологической инфраструктуре (после виртуализации и как более существенный, чем энергосбережение и мониторинг). В это же время прогнозировалось, что внедрение технологий больших данных наибольшее влияние окажет на информационные технологии в производстве, здравоохранении, торговле, государственном управлении, а также в сферах и отраслях, где регистрируются индивидуальные перемещения ресурсов.

С 2013 года большие данные как академический предмет изучаются в появившихся вузовских программах по науке о данных и вычислительным наукам и инженерии.

В 2015 году Gartner исключил большие данные из цикла зрелости новых технологий и прекратил выпускать выходивший в 2011—2014 годы отдельный цикл зрелости технологий больших данных, мотивировав это переходом от этапа шумихи к практическому применению. Технологии, фигурировавшие в выделенном цикле зрелости, по большей части перешли в специальные циклы по продвинутой аналитике и науке о данных, по BI и анализу данных, корпоративному управлению информацией, резидентным вычислениям, информационной инфраструктуре.

VVV

Набор признаков VVV (volume, velocity, variety) изначально выработан Meta Group в 2001 году вне контекста представлений о больших данных как об определённой серии информационно-технологических методов и инструментов, в нём, в связи с ростом популярности концепции центрального хранилища данных для организаций, отмечалась равнозначимость проблематик управления данными по всем трём аспектам. В дальнейшем появились интерпретации с «четырьмя V» (добавлялась veracity — достоверность, использовалась в рекламных материалах IBM), «пятью V» (в этом варианте прибавляли viability — жизнеспособность, и value — ценность), и даже «семью V» (кроме всего, добавляли также variability — переменчивость, и visualization). IDC интерпретирует «четвёртое V» как value c точки зрения важности экономической целесообразности обработки соответствующих объёмов в соответствующих условиях, что отражено также и в определении больших данных от IDC. Во всех случаях в этих признаках подчёркивается, что определяющей характеристикой для больших данных является не только их физический объём, но другие категории, существенные для представления о сложности задачи обработки и анализа данных.