Группа антисимметрии

01.04.2021

Группа антисимметрии в теории симметрии — группа, состоящая из преобразований, которые могут менять не только геометрическое положение объекта, но и также его некоторую двухзначную характеристику. Такой двухзначной характеристикой может быть, например, заряд (плюс-минус), цвет (чёрный-белый), знак вещественной функции, направление спина (вверх-вниз).

Группы антисимметрии называются также группами магнитной симметрии, а также группами чёрно-белой симметрии. По аналогии с этими группами вводятся группы многоцветной симметрии (Беловские группы, так как они были предложены в работах академика Н. В. Белова), в которых каждая точка объекта характеризуется уже не двухзначным, а многозначным параметром (цветом).

Содержание

Операции и элементы антисимметрии

В дополнение к обычным операциям симметрии (вращение, отражение, инверсия, трансляция и их комбинации) добавляются операции антисимметрии — вращение с изменением цвета (антиповорот), отражение с изменением цвета (антиотражение), инверсия с изменением цвета (антиинверсия), трансляция с изменением цвета (антитрансляция) и так далее. Соответственно, можно говорить и об элементах антисимметрии, которые включают в себя операции антисимметрии.

Следует также учитывать операцию, которая не меняет положение объекта, но меняет цвет — операция антиотождествления или антитождества. Группы, в которых присутствует такая операция, называются серыми, так как там в каждой точке пространства совпадают белая и чёрная часть объекта. Такие группы получаются просто добавлением операции антитождества к классической группе симметрии и их число равно числу классических групп симметрии. Сами классические группы симметрии также являются частным случаем групп антисимметрии. Наибольший интерес представляют группы, которые не являются серыми, и в которых присутствуют как элементы симметрии, так и элементы антисимметрии (группы смешанной полярности). Элементы антисимметрии в этих группах могут быть только чётного порядка, так как элементы антисимметрии нечётного порядка содержат операцию антиотождествления. Например, ось антисимметрии 3 (порядок 3) невозможна в этих группах, а инверсионная ось 3 (порядок 6) — возможна.

Последовательное выполнение двух операций антисимметрии или 2n-кратное выполнение оодной операции антисимметрии дважды меняет знак, то есть в результате знак не меняется. Таким образом, произведение двух операций антисимметрии приводит к классической операции симметрии. Поэтому групп, которые содержат только элементы и операции антисимметрии, не существует. Более того, число операций (но не элементов) антисимметрии в точечных группах антисимметрии равно числу операций симметрии в классических (одноцветных) группах.

Точечные группы антисимметрии

Хотя понятие антисимметрии применимо к любым точечным группам, обычно рассматривают кристаллографические точечные группы антисимметрии. Всего существует 58 чёрно-белых групп, 32 классических полярных групп, и 32 серых нейтральных групп. Итого, 122 точечных групп антисимметрии. Ниже дана таблица всех 122 кристаллографических точечных групп антисимметрии. Обычно для их обозначения используются символы Германа-Могена, при этом элементы антисимметрии отмечаются символом соответствующего элемента симметрии со штрихом. В таблице даны сокращённые символы.

Стереографические проекции классических точечных групп и групп смешанной полярности.

Чёрным цветом обозначены элементы симметрии. Красным — элементы антисимметрии.

Пространственные группы антисимметрии (Шубниковские группы)

Всего существует 1191 чёрно-белых групп, 230 классических полярных групп, и 230 серых нейтральных групп. Итого — 1651 Шубниковская группа.

Другие кристаллографические группы антисимметрии

Число различных кристаллографических групп антисимметрии (в скобках дано число классических групп симметрии).